
Reading and writing CDMS-
incompatible ASCII

or binary files



Outline

• ASCII input files

• Binary input files

• Writing data to output files



Some grounding

• Python itself, especially via the string module, makes 
it really easy to manipulate string, and therefore 
ingest ASCII data.

• The struct module, coupled with the Numeric
package allows for some ingestion of strictly binary 
files.



Reading text files in Python

• In its simplest form python provides useful tools to 
read ASCII data via string manipulation:
>>> f=open(‘file.txt’)
>>> lines=f.readlines()
>>> for ln in lines:
...    sp=ln.split()
...    print ln, “splits to:”, sp

------------ Example output from above ---------------
“o3, 0.3462, 0.5834” splits to: [“o3”, “0.3462”, “0.5834”]
“no2, 2.4435, 3.4352” splits to: [“no2”, “2.4435”, “3.4352 ”]



ASCII files via contrib package: asciidata

• The contributed asciidata module provides some 
simple ASCII file reading functions.

• Imagine a file containing tab_delimited data:
var1 var2
22 44.3
34 48.3

>>> import asciidata
>>> a=asciidata.tab_delimited('tab_del_data.txt')

>>> print a
{'var1': array([ 22.,  34.]), 'var2': array([ 44.3,  

48.3])}



ASCII using VCDAT’s browser module (1)

• The ASCII file reading capabilities of VCDAT can be 
accessed from the command line via the “browser”
module.

• For non-formatted data:
browser.gui_ascii.read(text_file ,header=0, 

ids=None, shape=None, next='------
',separators=[';',',',':'])

• header: number of lines to skip at the 
beginning of the file

• ids: Name(s) to assign to the variables 
returned

• shape: Shape(s) to give to each variable read
• next: string separator between each variable
• separators: string separating elements



ASCII using VCDAT’s browser module (2)

• For data in columns:
browser.gui_ascii_cols.read( text_file ,header=0, 

cskip=0, cskip_type='columns', axis=0, ids=None, 
idrow=0, separators=[';',',', ':'])

• cskip: number of column/character to skip
• cskip_type: what to skip column or character
• axis: 0/1 is the first column to be used as an 

axis for the 1D variables
• idrow: 0/1 use the first row to set variable 

ids
• ids: name to give to variables returned



ASCII files via contributed package: Scientific (1)

You can read ASCII “Fortran Formatted” files 
using the Scientific contributed package:

>>> f = open(ascii_filename, 'r') 
>>> # Import the module that does the work.
>>> from Scientific.IO import FortranFormat
>>> # Declare the fortran formats used to create the 
>>> # data.
>>> ff1 = FortranFormat.FortranFormat('2i6')
>>> ff2 = FortranFormat.FortranFormat('12i6')



ASCII files via contributed package: Scientific (2)

>>> data_line = f.readline()
>>> mon,yr=FortranFormat.FortranLine(data_line,ff1)
>>> # Now define an array to read the data into.
>>> import Numeric
>>> T_array = Numeric.zeros((14,))
>>> # In the next line you are assigning the values.
>>> T_array[start_index: end_index] = \

FortranFormat.FortranLine(f.readline(), ff2)
>>> # Note:You must have previously defined T_array.
>>> # See tutorial examples for more details.



Reading Binary files 

• Fortran code also produce “pure” binary file, for this the 
struct module can be really useful

• See http://docs.python.org/lib/module-struct.html for 
more details.

• Alternatively you can use the function from VCDAT 
inside the “browser” module:
>>> browser.gui_read_Struct.read( file ,format="", \

endian='@', datatype='f', ids=[], shape=[], \
separator=""):

http://docs.python.org/lib/module-struct.html


Reading Binary files 

• Or you can use the contributed ‘binaryio’
package:

>>> from binaryio import *
>>> iunit = bincreate('filename')
>>> binwrite(iunit, some_array)  
>>> # (the array can span 4 dimensions, or scalars)
>>> binclose(iunit)
>>> iunit = binopen('filename')
>>> y = binread(iunit, n, ...)   # (1-4 dimensions)
>>> binclose(iunit)



Self-Describing Binary Files (2)

• More recognised format are:

– GRIB – is handled via the GrADS/GRIB interface, 
a slightly convoluted but effective way to get data 
into CDAT.

– PCMDI DRS format – not covered here as 
relatively little UK usage.

– CDML (Climate Data Markup Language) – the 
internal CDAT XML representation that points to 
multiple binary files.



dset ^test.grb
index ^test.grb.idx
undef 9.999E+20
title test.grb
*  produced by grib2ctl v0.9.12.5p32l
dtype grib 255
options yrev
ydef 181 linear -90.000000 1
xdef 360 linear 0.000000 1.000000
tdef 1 linear 18Z01jan1996 6hr
zdef 21 levels
21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
vars 1
O3hbl 60 203,109,0 ** Ozone mass mixing ratio kg kg**-1

Reading GRIB 1 

To read GRIB (regular grids only), use the “grib2ctl.pl”
perl script to generate the control file (“.ctl”).

Example 
Control 

(*.ctl) file
[ produced by 
grib2ctl.pl ]

grib2ctl.pl is available at:
http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html

http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html


The ‘gribmap’ utility (part of GrADS) is used to create 
a small index file that points to the correct sections of 
the GRIB file to access the actual data.
Typical usage:
$ grib2ctl.pl afile.grb > afile.ctl
$ gribmap –e –i afile.ctl
# Open via the “afile.ctl” file.

Reading GRIB 2

gribmap is available as part of GrADS at:

http://grads.iges.org/grads/

http://grads.iges.org/grads/


Other self-describing formats of interest in the UK

• You can also get support for:

– PP-format – the BADC has developed code for reading the 
Met Office proprietary field data format. This should soon be 
included in the I/O layer beneath CDMS (known as cdunif –
a C-layer that provides read access to multiple formats, and 
write access to NetCDF). Ask for details.

– NASA Ames – a group of ASCII formats developed at NASA 
for field experiments and data exchange. Used extensively in 
UK atmospheric research. The BADC has developed a 
NASA Ames I/O Python package that links to cdms (see: 
http://home.badc.rl.ac.uk/astephens/software/nappy). 

http://home.badc.rl.ac.uk/astephens/software/nappy


Writing data to files 

• Writing ASCII files.

• Writing non-standard binary files.



Writing ASCII files 

• Writing ASCII files is largely about your preferences 
as a file author:

– Do you want any metadata retained?
– Do you want to follow any standards or make up 

your own brand?
– How do you want the data (and/or metadata) 

formatted?



Writing ASCII files 

• The simple view is to open an ASCII file and write to it:
>>> outfile=open(‘my_output.txt’, ‘w’) # opens file
>>> # Now write header
>>> outfile.write(“Header: CHORDEX34 data\n”)
>>> outfile.write(“Time\tTemp (K)\tWspd (m/s)\n”)
>>> # Get the time steps
>>> times=temp.getTime().asComponentTime()
>>> c=0
>>> while c<len(times): # Write data at each time
... outstring=“%s\t%s\t%s\n” % (times[c], \

temp[c], wspd[c])
... outfile.write(outstring)
... c=c+1
>>> outfile.close()



Writing ASCII files in NASA Ames format (1)

• The BADC has written a package to bridge the gap between the 
NASA Ames File format(s) developed in the 1990s for data 
exchange in scientific projects.

• nappy – NASA Ames Processing in Python – allows you to 
write CDMS variables directly to NASA Ames (some sub-
formats will choke, but most will work!).

• Get nappy (beta-release) at:

http://home.badc.rl.ac.uk/astephens/software/nappy
• Command-line usage:

$ cdms2na.py –i cdmsFile.nc –o naFile.na

http://home.badc.rl.ac.uk/astephens/software/nappy


Writing ASCII files in NASA Ames format (2)

Working with nappy and CDMS:

>>> import nappy,cdms # import modules
>>> # open file
>>> cdmsFile=cdms.open(‘mydatafile.nc’) 
>>> # Get variable
>>> cdmsVar=cdmsFile(‘n2o5’)
>>> # Create the NASA Ames builder instance
>>> naBuilder=nappy.CdmsToNABuilder(cmdsVars) 
>>> # Write output to NASA Ames file
>>> nappy.openNAFile(“my_file.na”, “w”, \

naBuilder.naDict)



Writing non-standard binary files 

• Once again you can use the python struct module to 
write more complex binary output files. For simple 
binary arrays written to files you can use the built-in 
python I/O:
>>> outfile=open(“binary_var.dat”, “wb”)

>>> x=N.array([2,4,6,8,9], 'f')
>>> outfile.write(x)
>>> outfile.close()

• If you have a multi-dimensional variable then you 
might need to write each row according to your own 
file format design.

• But why not use NetCDF?
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